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Figure 1: Autonomous and teleoperated sessions using our setup. a-e: robots executing long-
horizon precision-sensitive tasks autonomously. f -j: robots executing fine-grained tasks with our
immersive teleoperation system. a: unloading, in-hand passing; b: H1 can-sorting; c: GR-1 can-
sorting; d: can-insertion; e: towel folding; f ; earplugs packing; g: drilling; h:pipetting; i: two
operators teleoperate two robots interactively. The operator of H1 robot is at Boston while both robots
and GR-1 operator are at San Diego (approximately 3000 miles away). j: interactions with humans.

Abstract: Teleoperation serves as a powerful method for collecting on-robot data
essential for robot learning from demonstrations. The intuitiveness and ease of
use of the teleoperation system are crucial for ensuring high-quality, diverse, and
scalable data. To achieve this, we propose an immersive teleoperation system Open-
TeleVision that allows operators to actively perceive the robot’s surroundings in a
stereoscopic manner. Additionally, the system mirrors the operator’s arm and hand
movements on the robot, creating an immersive experience as if the operator’s mind
is transmitted to a robot embodiment. We validate the effectiveness of our system
by collecting data and training imitation learning policies on four long-horizon,
precise tasks (Can Sorting, Can Insertion, Folding, and Unloading) for 2 different
humanoid robots and deploy them in the real world. The system is open-sourced
at: https://robot-tv.github.io/

https://robot-tv.github.io/
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Figure 2: Teleoperated data collection and learning setup. Left: our teleoperation system. VR
devices stream the hand, head, and wrist poses to the server. The server retargets the human poses to
the robot and sends joint position targets to the robot. Right: we train an imitation policy for each task
with action chunking transformer. The transformer encoder captures the relationship of image and
proprioception tokens and the transformer decoder outputs action sequences of a certain chunk size.

1 Introduction
Learning-based robotic manipulation has advanced to a new level in the past few years, thanks to
large-scale real-robot data [1, 2]. Teleoperation has been playing an important role in data collection
for imitation learning, where it not only offers accurate and precise manipulation demonstrations,
but also provides natural and smooth trajectories that allow the learned policies to generalize to new
environment configurations and tasks. Various teleoperation approaches have been studied using VR
devices [3, 2], RGB cameras [4, 5, 6], wearable gloves [7, 8, 9], and customized hardwares [10, 11].
There are two major components in most teleoperation systems: actuation and perception. For
actuation, using joint copy to puppeteer the robot provides high control bandwidth and precision [10,
12, 13]. However, this requires the operators and the robot to be physically in the same location, not
allowing for remote control. Each robot hardware needs to be coupled with one specific teleoperation
hardware. Importantly, these systems are not able to operate multi-finger dexterous hands yet. For
perception, the straightforward way is to observe the robot task space with the operator’s own eyes
in a third-person view [5, 4, 3] or a first-person view [14, 15]. This inevitably will cause occlusion
on the operator’s sight during teleoperation (e.g., occluded by robot arms or torso), and the operator
cannot ensure the collected demonstration has captured the visual observation needed for policy
learning. Importantly, for fine-grained manipulation tasks, it is hard for the teleoperator to look
closely and intuitively at the object during manipulation. Displaying a third-person static camera
view or using passthrough in the VR headset [3, 2, 16] encounter similar challenges.

In this paper, we propose to revisit teleoperation systems with VR devices. We introduce Open-
TeleVision, a general framework to perform teleoperation with high precision applicable to different
VR devices on different robots and manipulators. We experiment with two humanoid robots including
Unitree H1 [17] humanoid robot with multi-finger hands and Fourier GR1 [18] humanoid robot with
grippers, on bimanual manipulation tasks (Fig. 1). With the captured human operators’ hand pose, we
perform re-targeting to control multi-finger robot hands or parallel-jaw grippers. We rely on inverse
kinematics to convert the operator’s hand root position to the robot arm end-effector position.

Our major contribution to allowing fine-grained manipulations comes from perception, which incor-
porates VR systems with active visual feedback. We use a single active stereo RGB camera on the
robot head equipped with 2 or 3 DoFs actuation, mimicking human head movement to observe a
large workspace. During teleoperation, the camera moves along with the operator’s head, streaming
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(a) Head movements. (b) Arm and hand movements.

Figure 3: Open-TeleVision enables high-DOF control of a head-mounted active camera and
upper body movements. Left: the robot’s head follows the movement of the operator, providing
intuitive spatial perception. Right: the robot’s arm and hand movements are mapped from the operator
with IK and motion retargetting.

real-time, ego-centric 3D observations to the VR device. The human operator sees what the robot
sees. This first-person active sensing brings benefits for both teleoperation and policy learning. For
teleoperation, it provides a more intuitive mechanism for the user to explore a broader view when
moving the robot’s head, and attend to the important regions for detailed interactions. For imitation
learning, our policy will imitate how to move the robot head actively together with manipulation.
Instead of taking a further and static captured view as inputs, active camera provides a natural
attention mechanism to focus on next-step manipulation related regions and reduce the pixels to
process, allowing smooth, real-time, and precise close-loop control. Another important innovation
in perception is streaming stereoscopic video from the robot view to human eyes. The operator
can have a better spatial understanding which is shown to be crucial for completing tasks in our
experiments. We also show training with stereo image frames improves the performance of the policy.

Our experiments follow the teleoperation and imitation learning paradigm. We experiment with
multiple fine-grained manipulation tasks across two robots as shown in Fig. 1. For teleoperation,
we qualitatively show the benefits of using an active camera allows more intuitive and focused
observation, and quantitatively show streaming stereoscopic video allows better success rate and
shorter completion time across different users. For imitation learning, we quantitatively report active
camera sensing enables faster inference for real-time smooth control, and using stereoscopic inputs
achieves better manipulation performance. Our policy can conduct long-horizon tasks such as
inserting multiple cans in a sequence. A key benefit of our system is enabling remote control by an
operator via the Internet. One of the authors, Ge Yang at MIT (east coast) is able to teleoperate the H1
robot at UC San Diego (west coast). We include videos of this type of coast-to-coast teleoperations
on our website.

2 TeleVision System
Our system overview is shown in Fig. 2. We develop a web server based on Vuer [19]. The VR
devices stream the operator’s hand, head and wrist poses in SE(3) to the server, which handles the
human-to-robot motion retargeting. Fig. 3 shows how the robot’s head, arm, hand follows the human
operators movements. In turn, the robot streams stereo video at a resolution of 480x640 for each
eye. The entire loop happens at 60 Hz. While our system is agnostic to VR device model, we choose
Apple VisionPro as our VR device platform in this paper.

Hardwares: For robots we choose 2 humanoid robots as shown in Fig. 4: Unitree H1 [17] and
Fourier GR-1 [18]. We only consider their active sensing neck, two 7DoF arms and end-effectors,
while other DoFs are not used. H1 has 6 DoFs for each hand from [20], while GR-1 has a 1 DoF jaw
gripper. For active sensing, we design a gimbal with two revolute DoFs (yaw and pitch) mounted on
top of the torso of H1. The gimbal is assembled from 3D printed parts and powered by DYNAMIXEL
XL330-M288-T motors [21]. For GR-1, we use the 3 DoF neck (yaw, roll, and pitch) that comes
with the manufacturer. A ZED Mini [22] stereo camera is used with both robots to provide stereo
RGB streaming. We mostly feature humanoid robots in our setup because the teleoperation issue
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Figure 4: Reference design of Open-TeleVision on two types of hardware. Left: Unitree H1 [17]
with 6 DoF Inspire [20] hands. The head contains yaw and pitch motors. Right: Fourier GR-1 [18]
with jaw gripper. The active neck is from the manufacturer with yaw roll and pitch motors.

of occlusion and lack of intuitiveness of current system is the most prominent. While our system
is specifically tailored for humanoid robots to maximize the capability for immersive teleoperation
experiences, it is versatile enough to be applied to any setup featuring two arms and one camera.

Arm Control: The human wrist poses are first converted into the robot’s coordinate frame. Specifi-
cally, the relative positions between the robot end-effectors and the robot head are expected to match
those between the human wrists and head. The orientations of the robot wrists are aligned with the
absolute orientations of the human wrists, as estimated during the initialization of the Apple VisionPro
hand tracking backend. This differentiated treatment of end-effectors’ positions and orientations
ensures the stability of the robot end-effectors when the robot’s head moves along with human’s head.
we employ the Closed-loop Inverse Kinematics (CLIK) algorithm based on Pinocchio [23, 24, 25]
to compute the joint angles of the robot’s arm. The input end-effector poses are smoothed using an
SE(3) group filter, implemented with Pinocchio’s SE(3) interpolation, enhancing the stability of the
IK algorithm. To further mitigate the risk of IK failures, our implementation incorporates a joint angle
offset when the arm’s manipulability approaches its limits. This correction procedure has minimal
impact on end-effector tracking performance, as the offset is projected onto the nullspace of the robot
arm’s Jacobian matrix, thereby preserving tracking accuracy while addressing the constraints.

Hand Control: The human hand keypoints are translated into robot joint angle commands through
dex-retargeting, a highly versatile and fast-computing motion retargeting library [4]. Our approach
utilizes vector optimizers on both dexterous hand and gripper morphologies. The vector optimizers
formulate the retargeting problem as an optimization problem [4, 26] while the optimization is defined
based on user-selected vectors:

min
qt

N∑
i=0

||αvit − fi(qt)||2 + β||qt − qt−1||2. (1)

In the above formulation, qt denotes the robot joint angles at time t, and vit is the i-th keypoint vector
on the human hand. The function fi(qt) computes i-th keypoint vector on the robot hand using
forward kinematics from the joint angles qt. The parameter α is a scaling factor that accounts for the
hand size difference between the human hand and the robot hand (we set it as 1.1 for Inspire hands).
The parameter β weights the penalty term that ensures temporal consistency between consecutive
steps. The optimization is conducted in real-time using Sequential Least-Squares Quadratic Program-
ming (SLSQP) algorithm [27] as implemented in NLopt library [28]. The computation of forward
kinematics and its derivatives are conducted in Pinocchio [24].

For dexterous hands, we employ seven vectors to synchronize the human and robot hands: five vectors
represent the relative positions between the wrist and each fingertip keypoint; two additional vectors,
spanning from the thumb fingertip to the primary fingertips (index and middle), are incorporated to
enhance the motion accuracy during fine-grained tasks. For grippers, optimization is achieved using
a single vector, defined between the human thumb and index fingertips. This vector is aligned with
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(a) The robot picks up a randomly placed can (#1), places the red can in the left case (#2), picks up the next
can (#3), places the green can in the right case (#4). When the sorting box at the edge of the table is empty (as
shown in #1, #3) and there is no more can on the table, the robot poses the ending gesture (End).

(b) GR-1 robot doing the same Can Sorting task as in Fig. 5a.

(c) The robot picks up the can (#1), inserts the can into the slot (#2), uses the other hand to repeat picking and
inserting(#3, #4). When all six slots have been filled, the robot poses the ending gesture (End).

(d) The robot picks up the two corners of the towel (#1), folds the towel (#2), gently moves the towel to the edge
of the table (#3), folds the towel twice (#4). When the towel has been folded into a satisfactory configuration,
the robot poses the ending gesture (End).

(e) The robot extracts the tube from a random slot (#1, #4), passes from right hand to left (#2), places the tube in
the designated position (#3). When there is not a tube anymore, the robot poses the ending gesture (End).

Figure 5: Data collection using H1 on four tasks. Each row represents one task. At the end of
each task, the operator postures to the same ending gesture to signify the successful completion of
one demonstration. Then our system will stop recording data. We do not crop the ending gesture
from our dataset. The learned policy can successfully react to ending conditions.

the relative position between the gripper’s upper and lower ends, enabling intuitive control over the
grippers opening and closing motions by simply pinching the operator’s index and thumb fingers.

3 Experiments
In this section, we aim to answer the following questions:

• How do the key design choices of our system affect the performance of imitation learning results?

• How effective is our teleoperation system in collecting data?

We choose ACT [10] as our imitation learning algorithm with two key modifications. First, we replace
the ResNet with a more powerful visual backbone DinoV2 [29, 30], a pretrained vision transformer
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(ViT) by self-supervised learning. Second, we use two stereo images instead of four images from
individually arranged RGB cameras as the input to the transformer encoder. The DinoV2 backbone
produces 16× 22 tokens for each image. The state token is projected from the current joint position
of the robots. We use absolute joint positions as the action space. For H1 the action dimension is
28 (7 for each arm, 6 for each hand, and 2 for active neck). For GR-1 the action dimension is 19 (7
for each arm, 1 for each gripper, 3 for active neck). The proprioception token is projected from the
corresponding joint position readings.

We choose four tasks with an emphasis on precision, generalization and long horizon to show the
effectiveness of our proposed teleoperation system in Fig. 5. These tasks require actively looking to
the left or right of the workspace using a single active camera, otherwise a multi-camera setup on
the table. They also involve significant object location randomization and different manipulation
strategies. We further show the data collection intuitiveness and speed by conducting user studies on
all four tasks and comparing them with humans doing the same tasks. The tasks include:

Can Sorting: This task as shown in Fig. 5a involves sorting randomly placed Coke cans (red) and
Sprite cans (green) on a table. The cans are placed on the table one-by-one but with random positions
and types (Coke or Sprite). The goal is to pick up each can on the table and toss it into the designated
case: left for Coke and right for Sprite. Solving this task requires the robot to adaptively generalize
upon the position and orientation of each can for accurate grasping. It also demands that the policy
can adjust its planned motions based on the color of the can it is currently holding. Each episode
consists of sorting 10 cans (5 Sprite 5 Coke randomly) consecutively.

Can Insertion: This task shown in Fig. 5c involves picking up soft drink cans from the table and
carefully inserting them into slots within a container in a predefined sequence. While both involve
manipulation of drink cans, this task demands more precise and fine-grained actions than the previous
one as a successful insertion necessitates high accuracy. In addition, a different grasping strategy
is adopted in this task. In the previous can-sorting task, the robot only needs to toss the can into a
designated area, hence we form a grasp that involves the palm and all five fingers, which is a tolerant
but imprecise grasping strategy. In this one, to insert the can into a slot that is only slightly larger
than the can (the diameter of the soda can is roughly 5.6 cm, and the diameter of the slot is roughly
7.6 cm), we employed a more pinching-like strategy that utilizes only the thumb and index fingers,
enabling more granular adjustments in the placement of the cans. The two distinct grasping strategies
demonstrate that our system is able to accomplish tasks with complex hand gesture requirements.
Each episode of this task includes picking and placing all six cans into the right slots.

Folding: This task shown in Fig. 5d involves folding the towel twice. The distinction of task is that it
manifests the system’s capability to manipulate soft and compliant materials like a towel. The action
sequence of this task unrolls as follows: pinching the two corners of the towel; lifting and folding;
gently moving the towel to the edge of the table to prepare for a second fold; pinching, lifting, and
folding again. Each episode of this task consists of one complete folding of the towel.

Unloading: This task shown in Fig. 5e is a composite operation that involves tube extraction followed
by in-hand passing. In this task, a chip tube is randomly placed into one the four slots within a sorting
box. The goal is to identify the slot containing the tube, extract the tube using the right hand, pass
it to the left hand and place the tube in a predefined location. To successfully execute this task, the
robot needs both visual reasoning to discern the tube’s location and accurate action coordination
for extraction and in-hand passing. Each episode of this task consists of picking up 4 tubes from 4
random slots, passing them to another hand, and finally putting them on the table.

3.1 Imitation Learning Results

We ablate our key design choices of the system and show from real-world experiments their ef-
fectiveness. The two baselines are w. ResNet18, which uses the original ACT visual backbone
ResNet18 [31], and w/o Stereo Input, which only takes the visual tokens from the left image instead
of both. All models are trained using AdamW optimizer [32, 33] with a learning rate of 5e− 5, a
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Baselines H1 Can Sorting GR-1 Can Sorting Can Insertion

Pick Place Pick Place Pick Insert

w. DinoV2 (Ours) 92% 88% 87% 60% 90% 87%
w. ResNet18 74% 58% 83% 50% 53% 70%
w/o Stereo Input 46% 52% 73% 63% 47% 63%

Baselines Folding Unloading

Lift Fold Move Fold Extract Pass Place

w. DinoV2 (Ours) 100% 100% 100% 100% 100% 100% 100%
w. ResNet18 100% 100% 100% 100% 85% 100% 95%
w/o Stereo Input 100% 100% 60% 100% 70% 95% 100%

Table 1: Success rate of autonomous policy. We record 5 real-world episodes for each
task. Each episode contains a complete task cycle defined in Sec. 3. On GR-1, each Can
Sorting roll-out contains 6 pickings and 6 placings, accumulating 30 trials for each sub-task.

batch size of 45 and for 25k iterations on a single RTX 4090 GPU. We conduct Can Sorting task on
both H1 and GR-1 robots. All other tasks are conducted with H1 robot only.

From our experiment results shown in Tab. 1, we notice that the original ResNet backbone fails to
adequately perform all four tasks.

In the original ACT implementation, four cameras are used (two fixed, two wrist mounted) to alleviate
the deficiency of explicit spatial information from using RGB images. However, our setup involves
only two stereo RGB cameras, potentially making spatial information retrieval more difficult for
ResNet backbone.

Can Sorting: We evaluate the success rate of picking up the can and the accuracy of placing it in
the designated case separately. According to the results on H1 in Tab. 1, our model has the highest
success rate in both evaluation metrics. w. ResNet18 is distinctly inferior in both picking and sorting,
likely due to its backbone’s limitations. Without implicit depth information from stereo inputs, w/o
Stereo Input fails to properly pick up the can (23/50 success rate). Its low sorting accuracy (26/50
success rate) is highly correlated to its poor performance in the previous stage, as an experimenter
must frequently help it to grasp the can, an action that interferes with visual inference.

The results of Can Sorting with GR-1 are also reported in Tab. 1. In the picking sub-task, our model
consistently outperforms the other two baselines. However, in the placing sub-task, none of the
models reach satisfactory accuracy. This phenomenon can be attributed to the different morphologies
between the dexterous hand and the gripper: when a robot hand grasps the can, the camera is able
to see the color of the can and make its actions based on what it sees; in contrast, when a gripper
grasps the can, the camera can barely make out the color due to significant occlusion(Fig. 5b),
complicating visual inference. The other limitation is that ACT’s ability to make long-horizon
inference is dependent on its chunk size. In our setup, using a chunk size of 60 with an inference
frequency of 60 Hz effectively provides the robot with one second of memory: when the robot is
supposed to drop the can without direct visual confirmation, it has likely forgotten the color of the
can which was visible at the time of pickup.

Can Insertion: We evaluate the success rate of picking up and insertion separately. The results
(Tab. 1) suggest that our model surpasses the baseline models in both metrics. Successfully pinching
up the soda can with only two fingers and adjusting its pose to fit into the slot requires precise control
underpinned by spatial reasoning. This capability is notably absent in w/o Stereo Input.

Folding: We evaluate the success rate based on the policy’s ability to perform two consecutive folds
without dropping the towel. The results are reported in Tab. 1. Both ours and w. ResNet18 models
achieve a 100% success rate in performing the folds. We speculate that the high success rate of this
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Figure 7: Comparison between wide-angle lenses and cropped views. Left: H1 Can Sorting.
Right: Unloading. Wide angle images are of resolution 1280x720 and have a 102°(H) x 57°(V)
field-of-view. Cropped images are cropped from the bottom middle from the original wide-angle
images, and are of resolution 640x480. Red marks are the points of interests (PoIs) for the tasks. For
Can Sorting, the PoIs are the bin with cans to be sorted, pick location, coke bin and sprite bin. For
Unloading, the PoIs are tube slot, in-hand passing, and the drop location.

task across all models is due to its high repetitiveness in actions. On the other hand, w/o Stereo Input
occasionally fails (2/5 fails) at the third stage, in which the robot should gently move the towel to the
edge of the table to ease the second fold. We observe that w/o Stereo Input tends to press its hands
too hard on the table and prohibit the successful movement of the towel. This action is likely due to
the lack of depth information from using a single RGB image, as this step requires the robot to adjust
the force exerted by its hands based on the distance to the table.

Unloading: We evaluate the success rate on three consecutive stages individually: extracting the tube,
in-hand passing, and placing. As shown in Tab. 1, our model reaches 100% success rate in all three
stages. Both w. ResNet18 and w/o Stereo Input fail at extracting the tube from certain slots (3/20 fails
and 6/20 fails, respectively). The extraction is particularly hard for w/o Stereo Input, partly because it
cannot estimate the relative orientation between the tube and the hand correctly. In-hand passing and
placing are relatively simpler because these two stages do not involve much randomization during
data collection. Nonetheless, w. ResNet18 and w/o Stereo Input still fail at them occasionally (both
1/20 fails) while our model completes these two stages with no mistake.

3.2 Generalization

Figure 6: Distribution of can placements. Left:
The cans are placed in a f 4×4 grid. Right: number
of successful pickings heatmap with 5 trials at each
location.

We evaluate the generalization capabilities of
our model under randomized conditions. In the
Can Sorting task conducted with H1, we assess
its success rate of picking from a 4x4 grid with
each cell measuring 3 cm, as depicted in Fig.6
(left). The results are detailed in Fig.6 (right),
which indicate that our policy generalizes well
to large areas covered in the dataset, maintain-
ing a 100% success rate. Even in the peripheral
regions, which are rare or absent in the demon-
strations, our model still exhibits adaptability to
complete the grasp at times.

Why Use Active Sensing? We compare the view from a wide-angle camera and our active camera
setup with a cropped view in Fig. 7. A single static wide-angle camera still have trouble capturing
all of the points-of-interest (PoI). One has to mount multiple cameras [10, 12] or tune the camera
positions for each task. The static wide angle camera also captures non-relevant information that
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brings additional computation cost for both training and deployment as shown in Tab. 2. Our
TeleV ision system is 2x faster for training with the same batch size and can accommodate 4x data
in one batch on a 4090 GPU. During inference, our system is also 2x faster, leaving sufficient time
for IK and retargeting computation to reach 60Hz deployment control frequency. When using wide
angle images as input, the inference speed is lower, at about 42 frames per second.

Furthermore, with a static camera, the operator needs to gaze at a PoI on the edge of the image,
which brings additional discomfort and non-intuitiveness as humans use central (foveal) vision to
focus [34, 35].

Method Average Training Batch Time (s) Average Deploying Step Time (s)

Cropped Active 45 (Ours) 0.41 0.012 (83Hz)
Cropped Active 10 0.10 -
Wide Angle 10 0.32 0.024 (42Hz)

Table 2: Computation cost comparisons between the active vs non-active vision setup. We
sample 100 batches for training and 100 deployment steps and average their computation time. The
number in the baseline name indicates batch size. Cropped Active is down-sampled from 640x480 to
308x224, resulting in 352 image tokens for each camera. Wide Angle is down-sample with the same
scale to 588x336, resulting in 1008 image tokens for each camera. We use batch size 10 for Wide
Angle due to the memory limit of an RTX 4090 GPU.

Teleoperated Performance. In Fig. 8, we include more teleoperation tasks that our system is
capable of. The Wood-board Drilling task shows that our system can operate heavy-weight (1kg)
tools that are designed for humans, thanks to its compatibility with dexterous hands, and can apply
sufficient force to the wood board to drill it through. Such a task is virtually impossible for the
grippers. The Earplugs Packing task demonstrates that our system is dexterous and responsive enough
to perform agile bimanual arm-hand coordination. The Pipette task demonstrates that our system is
also capable of precise actions. This is also a task that is extremely hard or impossible for the grippers
to achieve, as the usage of a pipette is specialized for anthropomorphic hands. Even though the motors
on H1 humanoid robot are quasi-direct-drive motors with planetary reducers, which are known to
have gear clearance and far less accuracy and stiffness, our system can still achieve high-precision
with human operators in the loop. Our system also achieves remote teleoperation as shown in Fig. 9.
Please see our videos for visualization.

User Study. We validate our design choice of streaming and displaying stereo images in the VR
headset through a user study. The use study is performed on four participants with varied levels of
prior exposure to VR devices. The participants are graduate students aged 20-25. Each participant is
asked to complete all four tasks under guidance and is given roughly five minutes to familiarize with
the system and the tasks. Their performances in both stereo and monocular (Mono) setup are detailed
in Tab. 3. Both metrics (task completion time and success rate) suggest that Stereo surpasses Mono
by a large margin. Additionally, based on qualitative results of user feedback, using stereo image
is remarkably better than using a single RGB image. Typically, human eyes are adaptive enough
to infer depth and spatial relationships from a single RGB image. However, in teleoperation cases
where the operator must actively interact with different objects, such intuitions are often proven
insufficient. Leveraging the spatial information available in stereo images can substantially alleviate
the discomfort when teleoperating robots with only images.

4 Related Work
Data Collection. Learning based methods have achieved great success in locomotion control with
massive simulation data and Sim2Real transfer [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48]. On
the other hand, collecting real-robot demonstrations for imitation learning has shown to be a more
effective way for robotic manipulation [49, 50, 1, 51, 52]. This is mainly due to the large Sim2Real
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User Stereo Mono

Can
Sorting

Can
Insertion

Folding Unloading Can
Sorting

Can
Insertion

Folding Unloading

#1 67 54 30 73 110 116 49 94
#2 59 55 44 87 91 92 67 119
#3 55 59 27 52 76 68 37 96
#4 82 62 36 55 88 62 47 78

Mean 66 58 34 67 91 85 50 97

(a) Completion time for individual participant in second.

User Stereo Mono

Can
Sorting

Can
Insertion

Folding Unloading Can
Sorting

Can
Insertion

Folding Unloading

#1 100% 100% 100% 100% 100% 33% 100% 50%
#2 100% 100% 100% 100% 100% 83% 100% 50%
#3 100% 100% 100% 100% 90% 83% 100% 50%
#4 100% 100% 100% 100% 80% 83% 100% 50%

Mean 100% 100% 100% 100% 93% 71% 100% 50%

(b) Success rate for individual participant.

Table 3: User study results. Users see stereo video stream in Stereo and see a single RGB video
from the left camera in Mono.

Teleop System Actuation Hand Bimanual Perception Remote Depth

OPEN TEACH[2] VR Controller ✓ ✓ Direct View+RGB ✗ ✓
HATO[3] VR Tracking ✓ ✓ Direct View ✗ ✓
AnyTeleop[4] RGB(D) Tracking ✓ ✗ Direct View/RGB ✓ ✓
Telekinesis[5] RGB Tracking ✓ ✗ Direct View/RGB ✓ ✓
Transteleop[6] IMU+Depth ✓ ✗ Direct View ✗ ✓
ALOHA[10] Joint Copy ✗ ✓ Direct View ✗ ✓
AirExo[11] Joint Copy ✗ ✓ Direct View ✗ ✓
GELLO[13] Joint Copy ✗ ✓ Direct View ✗ ✓
Mobile ALOHA[14] Joint Copy ✗ ✓ Direct View ✗ ✓
DexCap[15] SLAM+Mocap ✓ ✓ Direct View ✗ ✓

Open-TeleVision VR Tracking ✓ ✓ Stereo ✓ ✓

Table 4: Comparing Open-TeleVision’s capabilities with prior teleoperation systems. A more
detailed analysis to the contents in this table is in Appendix. A.

gap with complex contacts between the manipulator and objects and surroundings. To collect real-
world data, teleoperation has emerged as the mainstream approach using RGB cameras [4, 5, 6],
mocap gloves [7, 8, 9], and VR devices [3, 2]. There are also more conventional frameworks
exploiting exo-skeleton devices [11] or mirroring arms for joint copy [10, 12, 13]. For example, the
recent ALOHA framework [10] provides precise control on fine-grained manipulation tasks with
exact joint mapping. In this paper, instead of adopting joint copy, we find VR-based teleoperation
system with hand retargeting can also achieve precise control of fine-grained manipulation tasks.
Table 4 summarizes the difference between our system and previous teleoperation systems.

Bimanual Teleoperation. Access to an intuitive and responsive teleoperation system is essential for
collecting high-fidelity demonstrations. Most existing teleoperation systems are restricted to using
grippers [11, 53, 13, 14] or single-hand setups [54, 55, 56], which tend to be either non-intuitive or
limited in their capabilities. We believe enabling manipulation with multi-finger hands in 3D space
allows more robust manipulation conducted on diverse tasks, providing significant advantages over
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(a) The robot holds a wood board of thickness 2cm with the left hand and uses an electric drill to drill 2 holes on
the board. This task requires precise control of the drill trigger using the index finger. Furthermore, our system
enables fine control of the hand so that after drilling the first hole, the robot can let the board slide in hand to
leave space for the second drilling.

(b) The robot picks randomly placed earplugs on the table and places them into randomly placed latch boxes.
The robot needs dexterous bimanual in-hand manipulation and adjustments to properly close the latch box.

(c) The robot utilizes its thumb DoF to control a pipette to transfer liquid from a petri dish to a centrifuge tube.
The diameter of the tube is only 1.5cm so it requires high precision to complete the task.

Figure 8: More teleoperation experiments.These experiments aim to show our system’s reliability
and precision for a wide variety of tasks.

San Diego

Boston

Figure 9: Our system enables cross-country teleoperation over the internet. The operator at
Boston, USA can operate a robot at San Diego, USA (approximately 3000 miles away). The robot
and operator pictures are flipped left to right for better illustration.

existing teleoperation systems. For example, it will be very challenging for a parallel-jaw gripper
to stably grasp a Pringles Chips tube. For the handful of bimanual-hands setups [3, 2], they require
operators to control the robot by directly observing its hands during task execution or seeing an RGB
image from a fixed camera. In contrast, our system integrates a first-person stereo display with active
head rotations, offering an intuitive interface as if the robot is an avatar of the operator itself. Our
system allows the operator to control the robot remotely far away (e.g., control the robot on the
West Coast from the East Coast). This is also the major innovation that differentiates our work from
concurrent works on humanoid teloperation [57, 58]. Our system allows smooth teleoperation on
fine-grained tasks, and precise control policy for long-horizon execution.
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Imitation learning. The topic of imitation learning has covered a wide range of literature. If we
distinguish the existing work with sources of demonstrations, we can classify them into learning
from real-robot expert data [14, 10, 12, 59, 60, 61, 62, 50, 63, 1, 64, 51, 65], learning from play
data [66, 67, 68], and learning from human demonstrations [67, 69, 70, 71, 72, 73, 74, 56]. Besides
learning for manipulation, motion imitation for physical characters and real robots have also been
widely studied in [75, 76, 40, 77, 78, 79, 80, 81, 82, 80, 83, 84, 85, 86, 87, 88]. This paper falls into
imitation learning for manipulation tasks using real-robot data collected by human teleoperation.

5 Conclusion and Limitations
In this paper, we propose a system for immersive teleoperation with stereoscopic video streaming and
active perception with actuated necks. We show that our system can enable precise and long-horizon
manipulation tasks and the data collected with our system can be readily utilized by imitation learning
algorithms. We also conduct user studies to show the importance of stereo perception for human
operators. While the stereo perception is crucial for the operators’ spatial understanding, there is still
a lack of other forms of feedback, such as haptic feedback, which is typically the dominant feedback
with first-person visual occlusion and in tactile-intensive tasks. A system that enables the relabeling
of expert data could be very helpful for increasing success rate, which is also missing from our system
now. The future work can be extended to mobile version which utilizes all the DoFs of the robot.
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A Discussion on Comparing with Prior Teleoperation Systems

We discuss from two critical perspectives of teleoperation: actuation and perception.

Actuation. Various approaches have been studied for teleoperating robots through human commands,
including visual tracking, motion-capture devices, and joint copying through customized hardware.
While using motion-capture gloves for teleoperation seems the most intuitive, the commercially
available gloves are not only costly but also unable to provide wrist pose estimations. The joint
copying method has drawn significant attention recently, following the success of ALOHA[10].
This method offers precise and dexterous control. Historically, this method was considered costly,
requiring using an additional pair of identical robotic arms for teleoperation; nonetheless, this issue
has been mitigated by the adoption of low-cost exoskeleton devices to transmit commands[11].
Despite their simplicity, joint copying systems are currently limited to using grippers and have not
yet been extended to operate multi-finger hands. Conversely, visual tracking employs off-the-shelf
hand pose extractors to track finger movements, but relying solely on RGB or RGBD images can
lead to noisy and imprecise data. The recent surge in VR technology has led to the development of
teleoperation systems that utilize VR tracking. VR headset manufacturers often integrate built-in
hand-tracking algorithms that fuse data from diverse types of sensors, including multiple cameras,
depth sensors, and IMUs. Hand-tracking data collected through VR devices are generally considered
more stable and accurate than self-developed vision-tracking systems, while the latter only utilize a
subset of the mentioned sensors (RGB+RGBD[4], Depth+IMU[6], etc.).

Perception. While being the other critical component of teleoperation, perception has been consider-
ably less explored than actuation within this field. Most existing teleoperation systems require the
operators to directly observe the robot’s hands using their own eyes. While direct viewing provides
the operators with depth sensing, leveraging humans’ inherent capability for stereoscopic vision,
it restricts the system to be non-remote, necessitating the physical presence of the operator. Some
teleoperation systems circumvent this by streaming RGB images, enabling remote control[4, 5].
However, if the operator opts for remote controlling by watching an RGB stream, the benefits of depth
sensing provided by the human eye are lost. Despite being capable to provide both remote controlling
and depth sensing, these two features are mutually exclusive in these systems. OPEN TEACH[2]
merges the two in a mixed-reality fashion, yet it still requires the operator to be in proximity to
the robot, otherwise the depth sensing is unavailable. Prior to Open-TeleVision, no system offered
both remote control and depth sensing simultaneously: the operator is forced to choose between
either direct viewing, which demands physical presence, or RGB streaming, which abandons depth
information. By utilizing stereo streaming, our system is the first to provide both functionalities
within a single setup.

B Discussion of Visual Occlusion

To support our proposed assumption that the unsatisfactory performance observed in GR-1 Can
Sorting task stems from visual occlusion caused by GR-1’s gripper end-effector, we perform a
controlled experiment. In the new experiment, we add color labels to the cans to mitigate the
occlusion factor, as depicted in Fig. 10 left. The other settings are identical to those described in the
GR-1 Can Sorting task in the article. Results are recorded in Table. 5.

The results indicate a substantial improvement in the success rate of the placing task across all
three baselines, achieved by using labeled cans. Our model reach a 100% accuracy rate in the
placement, compared to the previous 0.60; notable gains are also observed in the other baselines,
with w. ResNet18 improving from 0.50 to 0.97, and w/o Stereo Input improving from 0.63 to 0.93.
On the other hand, while success rates of picking also increase for our model and w. ResNet18, w/o
Stereo Input does not exhibit similar improvements. This disparity further validates our claim that a
successful can-picking requires spatial information from stereo images.
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Baselines GR-1 Can Sorting

Pick(new) Pick(old) Place(new) Place(old)

w. DinoV2 (Ours) 97% 87% 100% 60%
w. ResNet18 90% 83% 97% 50%
w/o Stereo Input 47% 73% 93% 63%

Table 5: Success rate for GR-1 Can Sorting. The experiments are conducted under identical settings
and number of trials as outlined in Tab. 1. Columns marked as (old) contain the original results using
unlabeled cans, while the columns marked as (new) contain the results of the new experiment using
labeled cans.

Figure 10: Can labeling and generalization re-
sults. Left: Figure depicting labeled cans. Right:
number of successful pickings heatmap with 5 tri-
als at each location.

As with H1 in Sec. 3.2, we perform an experi-
ment to evaluate the model’s generalization ca-
pability with Can Sorting on GR-1 with labeled
cans. Its results are similarly collected from a
4x4 grid (the same as Fig. 5 left) with each
cell measuring 3 cm. Generalization results are
shown in the heatmap in Fig. 10 right. The re-
sults suggest that our model can easily adapt
to most of the random locations covered in our
experiment, reaching 100% grasping accuracy
in nearly all locations on the grid. The results
as shown here for GR-1 Can Sorting are also
notably better than the results as shown in Fig. 5 for H1 Can Sorting. The difference may also be
attributed to differences in end-effector morphologies. Grasping a soda can, which requires less
dexterity and more tolerance, is better suited to grippers than to robotic hands.

C Dexterous Hand

Figure 11: Inspire
Hand [20].

For H1 robot’s setup, the anthropomorphic hands we use are provided by
Inspire Robots [20]. A close-up of one of the Inspire Hands is shown in
Fig. 11. Each hand has five fingers and 12 DoFs, among which 6 are actuated
DoFs: two actuated DoFs are on the thumb and one on each of the remaining
fingers. Each non-thumb finger possesses a single actuated revolute joint at
the metacarpophalangeal (MCP) joint, serving as the entire finger’s actuating
DoF. The proximal interphalangeal (PIP) joints of these four fingers are driven
by the MCP joints through linkage mechanisms, adding four underactuated
DoFs. The thumb is equipped with two actuated DoFs at the carpometacarpal
(CMC) joint. The thumb’s MCP and interphalangeal (IP) joints are also driven
by linkage mechanisms, contributing to additional two underactuated DoFs.

D Teleoperation Interface

Fig. 12 shows our web-based cross-platform interface that can be accessed not only from VR devices
but also laptops, tablets and phones.

E Experimental Details and Hyperparameters

E.1 Experimental Details

More experimental details are listed in Tab. 6. All tasks, with the exception of Can Sorting (both H1
Can Sorting and GR-1 Can Sorting), use 20 human demonstrations for training. In contrast, only
10 demonstrations are used for Can Sorting. This choice is primarily due to its repetitive nature:
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Figure 12: Our web-based cross-platform system enables access across different devices. Left:
Apple Vision Pro. Middle: Meta Quest. Right: Macbook, iPad and iPhone. On VR devices, the users
can enter an immersive session to start teleoperation with hand and wrist pose streaming. On other
devices, hand and wrist streaming are not available but the user can still see the streamed images and
control the robot’s active neck by dragging on the devices’ screen.

Tasks Average Episode Length (s) Number of Episodes

H1 Can Sorting 93±5 10
GR-1 Can Sorting 61±5 10

Can Insertion 84±7 20
Folding 44±5 20

Unloading 93±6 20

Table 6: Details about collected demonstration data for each task.

each episode consists of 10 (6 for GR-1 Can Sorting) individual can-sortings. Consequently, 10
demonstrations encompass 100 individual sorting rollouts, providing ample data for training.

E.2 Hyperparameters

The hyperparameters employed for training the ACT [10] models are detailed in Table. 7. While the
majority of these hyperparameters are consistent across all baselines and all tasks, there are a few
exceptions, including chunk size and temporal weighting. The detailed explanations are as follows.

KL weight 10
chunk size 60
hidden dimension 512
batch size 45
feedforward dimension 3200
epochs 25000
learning rate 5e-5
temporal weighting 0.01

Table 7: Hyperparameters of ACT.

The definition of chunk size in the action chunking operation is outlined in the original ACT paper[10].
We use a chunk size of 60 for all tasks, with the exception of Can Insertion, in which we use a chunk
size of 100. Using a chunk size of 60 in our setup effectively provides the robot with approximately
one second of memory, correlating with our inference and action frequency of 60Hz. Nonetheless,
we notice that in Can Insertion task, using a larger chunk size, which corresponds to incorporating
more historical actions, proves to be advantageous for the model to perform correct action sequences.

The definition of temporal weighting in the temporal aggregation operation is outlined in the original
ACT paper[10], where an exponential weighting scheme wi = exp(−m ∗ i) is employed to assign
weights to actions at different timesteps. w0 is the weight for the oldest action, adhering to ACT’s
setting. m is the temporal weighting hyperparameter mentioned in Table. 7. As m decreases, greater
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emphasis is placed on more recent actions, rendering the model more reactive but less steady. We
found that using a temporal weight m of 0.01 reaches a satisfactory balance between responsiveness
and stability for most tasks. However, for Unloading and Can Sorting tasks, we adjust this parameter
to cater to their specific needs. For unloading, m is set as 0.05, ensuring greater stability during
in-hand passing; for Can Sorting, m is set as 0.005, providing quicker movements.
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